
Digging into BitVM 2
Antoine Riard, Bitcoinology, January 2025

About: ariard

- bitcoin protocol hacker ~2018 (base-layer and lightning)

- managing partner @ thelab31.xyz (R&D / security consulting “boutique”)

- areas of research interest: protocol security and bitcoin scalability
- cross-layer mempool issues (e.g mempoolfullrbf)

- lightning: time-dilation, dust-inflation and pinning attacks

- coinpool and payment pools research

 - privacy note: no photo thanks

About: Socratic talk

- the talk aims to be a dialogue asking and answering questions with the audience

- i’m assuming some Bitcoin 101 with blockchain fundamentals (Script, Tx, etc)

- if not familiar about technical basics do not hesitate to ask what does it mean

- if you have advanced remarks on the subjects, do not hesitate to grab the mic

The talk sections

I) Reminder on BitVM

II) BitVM 2: Building Blocks

III) BitVM 2: A Protocol Walkthrough

IV) BitVM 2: Use-Cases on top of the Protocol

V) BitVM 2: Protocol Limitations

A reminder on BitVM

- a “new” computing paradigm to express Turing-complete Bitcoin contracts

- fundamental innovation”: logic gate commitment in today’s Bitcoin Script

- promises: chess games, validity proofs verifications, alt-chain bridges

- disclaimer: my understanding of the paper material only
- it might be imperfect, paper not very complete

The BitVM trick: Bit Value Commitment

- emulating the OP_BITCOMMITMENT with sequence of OP_HASH160

- each hash commit to a bit value, either 0 or 1.

- emulating OP_NAND is possible too with OP_BOOLAND + OP_NOT

- by combining OP_NAND + OP_BITCMT, optimiscally verifiable logical gate

What is optimistic verification as a model ?

- Security model originally coming from the alt-chain and rollups-land.

- Computation of interest among second-layer counterparties moved off-chain.

- Digest submitted on-chain by a prover when the computation is over.

- Challenge period during which the verifier can contest the digest validity

What the heck is BitVM2 ?

- a significant improvement on the original BitVM design

- fundamental idea: still the same, express any computation on the blockchain

- main innovation proposed: compressing the computation with a SNARK verifier

- objective: practically fits the circuit of the computation within chain limits

Building Blocks: Lamport Signature

- a significant improvement on the original BitVM design

- a hash-based cryptographic scheme known since the end of the 70’s

- F: K -> V where F is a one way whose domain is the set of keys

- public key for a 1-bit data item : F(k.i), signature: k.i, where i message bit index

Building Blocks: Signature-based Covenants

- covenant: the scriptpubkey of a UTXO restricts the spending transaction
- yes, we have already covenants in BTC, e.g CHECKLOCKTIME_VERIFY

- script-based covenants and sigs-based covenants: immutability as a distinction
- conjecture: one cannot prove all copies of a private key have been deleted

- technique known in BTC since micropayment channels in ~2012

- multi-sig to constraint a spending tx under a form negotiated by counterparties

Building Blocks: Taproot Tree

- merkelized alternative tree of scripts, a Bitcoin Script extension since 2021

- basically, for 4 leaves a Merkle tree of: h(s_1) + h(s_2) + h(s_3) + h(s_4)

- PT2R script-path spend, block limit only on script size (i.e MAX_SCRIPT_SIZE)

- script-path spend have an absolute limit of 128 elements (BIP341)

Building Blocks: SNARG verification

- SNARGs: succinct non-interactive arguments in the pre-processing model

- A proof system to verify untrusted statements expressed as boolean circuits

- A triple of algorithms (G, P, V), with G key generator, P prover, V verifier

- Properties: completeness, soundness, efficiency

Building Blocks: Challenge-Response & Timelock

- Bitcoin Script have timelocks: nLocktime and nSequence-based (BIP68)

- in the context of Bitcoin L2s, can be used for challenge-response flow

- e.g using a nLocktime until block height 100, tx cannot be included

- challenge-response flow: to correct Alice’s state, Bob has until block 100

BitVM 2 : 3 On-chain Protocol Phases

- Setup phase: participants agree on an off-chain computation C

- Execution phase: operator (i.e the prover) executes the off-chain computation

- Commit and Challenge phase:
- 1) operator submit on-chain an assertion proof

- 2) challenger counter-submit on-chain a disprove proof

- Terminal phase: operator gets the set-up payout or challenger wins the reward

BitVM 2 : The Setup Phase I

- set of participants split the computation C in N sub-steps

- each sub-step is a serie of instructions or logical gates of the computation

- for each computation sub-step, a Lamport pubkey is generated

- each pair of gates and pubkey committed in the locking script’s Taproot tree

BitVM 2 : The Execution Phase

- one participant is performing the computation C off-chain

- e.g resolving a sudoku that has been translated as the computation C

- the participant keeps the list of resulting states for each sub-step

- this list of resulting states is the trace to be proven on-chain

BitVM 2 : The Commit Phase

- the participant publishes on-chain the trace by spending the deposit tx

- the commitment is done by revealing the Lamport private keys, i.e the sigs

- this publication is done through the assertion tx witness

- any-one (in theory) can challenge the prover as the commitment is public

BitVM 2 : The Challenge Phase I

- any participant with knowledge of the locking Taproot tree can challenge`

- to be successful, a challenger should prove that a logical sub-step is incorrect

- the challenger picks a sub-step at index R formalizes as S.j <- F(S.i) where S state

- all the sub-steps states have been provided by the prover in the previous phase

BitVM 2 : The Challenge Phase II

- any participant with knowledge of the locking Taproot tree can challenge`

- to be successful, a challenger should prove that a logical sub-step is incorrect

- the challenger picks a sub-step at index R formalizes as S.j <- F(S.i) where S state

- all the sub-steps states have been committed in the previous phase

BitVM 2 : The Terminal Phase

- if the challenger proves to the Bitcoin Script, 2 statements

- 1st statement: the S.j <- F(S.i) with given S.i is incorrect

- 2nd statement: “I know a revealed commitment for S.i”

- If 2 statements good, the challenger wins the reward, or after T the operator

BitVM 2: The Use Cases

- participants can emulate practical computation with BitVM 2 protocol

- e.g an alt-chain bridge, where funds peg-out are the proven computation

- e.g a proof of execution correctness of a cloud virtual machine

BitVM challenges #1: circuit scale ?

- taproot tree size limit you can encode in PT2R (see bip341)

- witness growth scale with the circuit complexity

- 32 bytes * 128 = 4096 bytes at 1 sat / virtual bytes - this is likely practical

- there is still an unknown on the off-chain computation max circuit complexity

BitVM challenges #2: fee fault-tolerance

- chainspace beefy witness for the Commit and Challenge phases

- no guarantee of stable network mempool feerates during whole C&C phase

- any challenger might have to provision sufficient fees

- asymmetry among operators and challengers on the verification timing

BitVM challenges #3: “challenge” DoS

- ideally efficient sampling techniques to verify circuit execution in minimal steps

- counterparty cannot engage anymore in correct-yet-lengthy verification steps

- circuit size and max depth of execution “fused” at setup

BitVM challenges #4: pre-signed sequence txn

- all the permutations of the circuit gates are not pre-committed anymore

- the state is carried through the Lamport pubkey / signatures

- data / code separation covenant appears to solve this

- is the usage of Lamport sig scheme that way sound and publicly verifiable ?

Thanks to Bitcoinology!

