Digging into BitVM 2

Antoine Riard, Bitcoinology, January 2025



About: ariard

bitcoin protocol hacker ~2018 (base-layer and lightning)

managing partner @ thelab31.xyz (R&D / security consulting “boutique”)

areas of research interest: protocol security and bitcoin scalability
cross-layer mempool issues (e.g mempoolfullrbf)
lightning: time-dilation, dust-inflation and pinning attacks
coinpool and payment pools research

privacy note: no photo thanks



About: Socratic talk

the talk aims to be a dialogue asking and answering questions with the audience
i’'m assuming some Bitcoin 101 with blockchain fundamentals (Script, Tx, etc)
if not familiar about technical basics do not hesitate to ask what does it mean

if you have advanced remarks on the subjects, do not hesitate to grab the mic



The talk sections

|) Reminder on BitVM

[I) BitVM 2: Building Blocks

[11) BitVM 2: A Protocol Walkthrough

V) BitVM 2: Use-Cases on top of the Protocol

V) BitVM 2: Protocol Limitations



A reminder on BitVM

a “new” computing paradigm to express Turing-complete Bitcoin contracts
fundamental innovation”: logic gate commitment in today’s Bitcoin Script
promises: chess games, validity proofs verifications, alt-chain bridges

disclaimer: my understanding of the paper material only
it might be imperfect, paper not very complete



The BitVM trick: Bit Value Commitment

emulating the OP_BITCOMMITMENT with sequence of OP_HASH160
each hash commit to a bit value, either O or 1.
emulating OP_NAND is possible too with OP_BOOLAND + OP_NOT

by combining OP_NAND + OP_BITCMT, optimiscally verifiable logical gate



What is optimistic verification as a model ?
Security model originally coming from the alt-chain and rollups-land.
Computation of interest among second-layer counterparties moved off-chain.
Digest submitted on-chain by a prover when the computation is over.

Challenge period during which the verifier can contest the digest validity



What the heck is BitVM2 ?

a significant improvement on the original BitVM design
fundamental idea: still the same, express any computation on the blockchain
main innovation proposed: compressing the computation with a SNARK verifier

objective: practically fits the circuit of the computation within chain limits



Building Blocks: Lamport Signature

a significant improvement on the original BitVM design

a hash-based cryptographic scheme known since the end of the 70’s
F: K->V where F is a one way whose domain is the set of keys

public key for a 1-bit data item : F(k.i), signature: k.i, where i message bit index



Building Blocks: Signature-based Covenants

covenant: the scriptpubkey of a UTXO restricts the spending transaction
- yes, we have already covenants in BTC, e.g CHECKLOCKTIME_VERIFY

script-based covenants and sigs-based covenants: immutability as a distinction

- conjecture: one cannot prove all copies of a private key have been deleted

technigue known in BTC since micropayment channels in ~2012

multi-sig to constraint a spending tx under a form negotiated by counterparties



Building Blocks: Taproot Tree

merkelized alternative tree of scripts, a Bitcoin Script extension since 2021
basically, for 4 leaves a Merkle tree of: h(s_1) + h(s_2) + h(s_3) + h(s_4)

PT2R script-path spend, block limit only on script size (i.e MAX_SCRIPT_SIZE)

script-path spend have an absolute limit of 128 elements (BIP341)



Building Blocks: SNARG verification

SNARGs: succinct non-interactive arguments in the pre-processing model

A proof system to verify untrusted statements expressed as boolean circuits
A triple of algorithms (G, P, V), with G key generator, P prover, V verifier

Properties: completeness, soundness, efficiency



Building Blocks: Challenge-Response & Timelock

Bitcoin Script have timelocks: nLocktime and nSequence-based (BIP68)
in the context of Bitcoin L2s, can be used for challenge-response flow
e.g using a nLocktime until block height 100, tx cannot be included

challenge-response flow: to correct Alice’s state, Bob has until block 100



BitVM 2 : 3 On-chain Protocol Phases

Setup phase: participants agree on an off-chain computation C

Execution phase: operator (i.e the prover) executes the off-chain computation
Commit and Challenge phase:

- 1) operator submit on-chain an assertion proof

- 2) challenger counter-submit on-chain a disprove proof

Terminal phase: operator gets the set-up payout or challenger wins the reward



BitVM 2 : The Setup Phase |

set of participants split the computation Cin N sub-steps
each sub-step is a serie of instructions or logical gates of the computation
for each computation sub-step, a Lamport pubkey is generated

each pair of gates and pubkey committed in the locking script’s Taproot tree



BitVM 2 : The Execution Phase

one participant is performing the computation C off-chain
e.g resolving a sudoku that has been translated as the computation C
the participant keeps the list of resulting states for each sub-step

this list of resulting states is the trace to be proven on-chain



BitVM 2 : The Commit Phase

the participant publishes on-chain the trace by spending the deposit tx
the commitment is done by revealing the Lamport private keys, i.e the sigs
this publication is done through the assertion tx witness

any-one (in theory) can challenge the prover as the commitment is public



BitVM 2 : The Challenge Phase |

any participant with knowledge of the locking Taproot tree can challenge’
to be successful, a challenger should prove that a logical sub-step is incorrect
the challenger picks a sub-step at index R formalizes as S.j <- F(S.i) where S state

all the sub-steps states have been provided by the prover in the previous phase



BitVM 2 : The Challenge Phase li

any participant with knowledge of the locking Taproot tree can challenge’
to be successful, a challenger should prove that a logical sub-step is incorrect
the challenger picks a sub-step at index R formalizes as S.j <- F(S.i) where S state

all the sub-steps states have been committed in the previous phase



BitVM 2 : The Terminal Phase

if the challenger proves to the Bitcoin Script, 2 statements
1st statement: the S.j <- F(S.i) with given S.i is incorrect
2nd statement: “| know a revealed commitment for S.i"

If 2 statements good, the challenger wins the reward, or after T the operator



BitVM 2: The Use Cases

participants can emulate practical computation with BitVM 2 protocol
e.g an alt-chain bridge, where funds peg-out are the proven computation

e.g a proof of execution correctness of a cloud virtual machine



BitVM challenges #1. circuit scale ?

taproot tree size limit you can encode in PT2R (see bip341)

witness growth scale with the circuit complexity

32 bytes * 128 = 4096 bytes at 1 sat / virtual bytes - this is likely practical

there is still an unknown on the off-chain computation max circuit complexity



BitVM challenges #2: fee fault-tolerance
chainspace beefy witness for the Commit and Challenge phases

no guarantee of stable network mempool feerates during whole C&C phase
any challenger might have to provision sufficient fees

asymmetry among operators and challengers on the verification timing



BitVM challenges #3: “challenge” DoS

ideally efficient sampling techniques to verify circuit execution in minimal steps
counterparty cannot engage anymore in correct-yet-lengthy verification steps

circuit size and max depth of execution “fused” at setup



BitVM challenges #4: pre-sighed sequence txn

- all the permutations of the circuit gates are not pre-committed anymore
- the state is carried through the Lamport pubkey / signatures
- data/ code separation covenant appears to solve this

- is the usage of Lamport sig scheme that way sound and publicly verifiable ?



Thanks to Bitcoinology!



