
Exploring BitVM
Antoine Riard, Bitcoinology, February 2024

About: ariard

- bitcoin protocol hacker ~2018 (base-layer and lightning)

- managing partner @ thelab31.xyz (R&D / security consulting “boutique”)

- areas of research interest: protocol security and bitcoin scalability
- cross-layer mempool issues (e.g mempoolfullrbf)

- lightning: time-dilation, dust-inflation and pinning attacks

- coinpool and payment pools research

 - privacy note: no photo thanks

What the heck is BitVM ?

- a “new” computing paradigm to express Turing-complete Bitcoin contracts

- fundamental innovation”: logic gate commitment in today’s Bitcoin Script

- promises: chess games, validity proofs verifications, alt-chain bridges

- disclaimer: my understanding of the paper material only
- it might be imperfect, paper not very complete

Bitcoin Script: a 101

- math ops: OP_ADD ; OP_SUB, OP_EQUAL

- crypto ops: OP_HASH160 ; OP_SHA256 ; OP_CHECKSIG

- control flow ops: OP_IF ; OP_ELSE ; OP_ENDIF

- Forth-like programming model (with stack), here since original client release
- script interpreter run at each transaction verification by all ful-nodes

- modulo performance optimizations (see “-assumevalid”)

Archeological note: ZKCP

- ZKCP = Zero-Knowledge Contingent Payment

- “Can you provide Y such as H(X)=Y ?” where H() computer program

- put Y as the haslock of an on-chain or off-chain swap contracts

- known since ~2011, ZK computation practical only since 2015
- a nullc old idea

BitVM abstraction: bit value commitment

- create a commitment to bit value with dual OP_HASH160 and control flow

- script is the following:
OP_IF

OP_HASH160 <0xdeadbeef>
OP_EQUALVERIFY <1>

OP_ELSE
OP_HASH160 <0xbeefdead>
OP_EQUALVERIFY <0>

OP_ENDIF

BitVM abstraction: logic gate commitment

- create NAND operation from bit value commitment

- script is the following:
OP_BITCOMMITMENT “left door” OP_TOALTSTACK
OP_BITCOMMITMENT “right door” OP_TOALTSTACK
OP_FROMALTSTACK OP_BOOLAND OP_NOT
OP_EQUALVERIFY

BitVM abstraction: gate circuit

- decompose your program (e.g WASM stack machine) in a sequence of gates

- commit those N number of gates in a Taproot tree in a P2TR

- counterparties can execute the gates on-chain if disagree off-chain execution

- optimistic case: counterparties exchange data off-chain on committed program

A BitVM example: what is A XOR B

- Paul and Vicky wishes to agree on the XOR result of A and B
- A and B two 1 byte random word

- Paul and Vicky pre-compute all XOR operations logical gates in circuit tree

- Paul and Vicky exchanges signatures for non-optimistic C&R transactions

- Paul and Vicky backs the XOR execution with a 1 BTC deposit
- Paul or Vicky broadcasts the funding tx to start off-chain execution

A BitVM example: nth’s bit “fraud”

- Vicky: “A XOR B does not equal A XOR !B but A XOR B !”

- Vicky runs off-chain the execution of A XOR B until finding gate op N

- Vicky: “Pauls shows me on-chain gate op N and its data input !”
- “and you’re better doing it fast after 2 weeks or I take your money”

A BitVM example: slash with equivocation

- Paul showed contrary bit on-chain / off-chain

- Vicky can equivocate on-chain by unlocking equivocation ability
- she knows both x0 and x1 preimages commitment for gate X

- Vicky can broadcast a punishment tx and finish the C&R phase

BitVM challenges #1: circuit scale ?

- taproot tree size limit you can encode in PT2R (see bip341)

- witness growth scale with the circuit complexity

- witness merkle branches to be paid in case of C&R

- not all complex contracts on-chain might be for everyone economic user
- valuable and interesting contracts might be limited to an economic minority…

BitVM challenges #2: fee fault-tolerance

- chainspace beefy witness for challenge-and-response (C&R)

- no guarantee of stable network mempool feerates during whole C&R phase

- counterparty have to provision lot of fee values

- malicious counterparty might trigger C&R at worst fee network times

BitVM challenges #3: “challenge” DoS

- ideally efficient sampling techniques to verify circuit execution in minimal steps

- ZK proofs techniques: bulletproofs / starks / folding schemes

- malicious counterparty might engage in correct-yet-lengthy verification steps

- moon maths more uncertain cryptographic breaks of high-value contracts
- good to design cryptographic honeypot !

BitVM challenges #4: pre-signed sequence txn

- all the permutations of the circuit gates might have to be pre-committed

- factorial sequence of pre-signed transactions to generate

- computational barrier above a certain number of gates

- data / code separation covenants and cross-input fetch might solve this

- ~ reusable science rocket style circa 2004

BitVM future: “minimum-valuable-contract” ?

- the BitVM design paradigm works on the whiteboard

- big uncertainty on the MVC and fee sats / computational costs on average user

- full bitvm toolchain hard challenge (e.g harder than lightning ?)

- trust-minimized “join five” or “dice bet” sounds first viable apps

Thanks to Bitconology!

